145 research outputs found

    A Systematic Approach to Human Powered Vehicle Design with an Emphasis on Providing Guidelines for Mentoring Students

    Get PDF
    The objective of this research is to provide guidebook that approaches the design of a human powered vehicle (HPV) from a systematic view for an ASME competition. The guidebook introduces students to design and enhances their current understanding related to design, general engineering principals, and engineering principals specific to HPVs. In terms of the design process a combination between the traditional design process and the systems engineering design process is discussed. From here the design process in broken into six main sections for the guidebook, and an evaluation section used to emphasis the usefulness of the guidebook. First an overall view of the traditional and system engineering design processes are given, along with an overview of the human powered vehicle competition (HPVC). This is followed by details of project planning and problem development. Next the conceptual stage is introduced where concept generation and evaluation methods and examples are discussed. Embodiment design is given in the following section, where solution variants are modeled in a preliminary layout. Next, methods of how to create a more defined preliminary layout are given in the detail design section were a definitive layout is established. Finally prototyping, testing, redesigns, and final design recommendations are outlined in the last section. In addition, the guidebook provided is meant to serve as a method that can be used to mentor students in the design process of an HPV. As such, the guidebook has been developed through a literature review of design theories, managerial, organizational, and engineering practices that have had beneficial impacts, and past experiences with designing HPVs. In terms of past experiences, the interactions with students involved in a creative inquiry at Clemson University have used as a subjective means to outline some of the important design considerations needed to be discussed. Additionally, Clemson\u27s HPVs have primarily consisted of tadpole tricycles and as such, a more in depth analysis is included for this particular HPV style

    Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

    Get PDF
    Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods

    The variegation of human brain vulnerability to rare genetic disorders and convergence with behaviorally defined disorders

    Get PDF
    BACKGROUND: Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal with few simultaneous analyses of multiple brain features across different GDDs. METHODS: Here, through multimodal neuroimaging of 3 aneuploidy syndromes [XXY (total n = 191, 92 controls), XYY (total n=81, 47 controls) , trisomy 21 (total n=69, 41 controls)], we systematically map the effects of supernumerary X, Y and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging derived phenotypes (IDPs). RESULTS: We reveal considerable diversity in cortical changes across GDDs and IDPs. This variegation of IDP change underlines the limitations of studying GDD effects unimodally. Integration across all IDP change maps reveals highly distinct architectures of cortical change in each GDD along with partial coalescence onto a common spatial axis of cortical vulnerability that is evident in all three GDDs. This common axis shows strong alignment with shared cortical changes in behaviorally defined psychiatric disorders and is enriched for specific molecular and cellular signatures. CONCLUSION: Use of multimodal neuroimaging data in three aneuploidies indicates that different GDDs impose unique fingerprints of change in the human brain that differ widely depending on the imaging modality being considered. Embedded in this variegation is a spatial axis of shared multimodal change that aligns with shared brain changes across psychiatric disorders and therefore represents a major high-priority target for future translational research in neuroscience

    Foundations of Relational Particle Dynamics

    Full text link
    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly-constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which positon and scale are purely relative but orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update

    Triangleland. I. Classical dynamics with exchange of relative angular momentum

    Full text link
    In Euclidean relational particle mechanics, only relative times, relative angles and relative separations are meaningful. Barbour--Bertotti (1982) theory is of this form and can be viewed as a recovery of (a portion of) Newtonian mechanics from relational premises. This is of interest in the absolute versus relative motion debate and also shares a number of features with the geometrodynamical formulation of general relativity, making it suitable for some modelling of the problem of time in quantum gravity. I also study similarity relational particle mechanics (`dynamics of pure shape'), in which only relative times, relative angles and {\sl ratios of} relative separations are meaningful. This I consider firstly as it is simpler, particularly in 1 and 2 d, for which the configuration space geometry turns out to be well-known, e.g. S^2 for the `triangleland' (3-particle) case that I consider in detail. Secondly, the similarity model occurs as a sub-model within the Euclidean model: that admits a shape--scale split. For harmonic oscillator like potentials, similarity triangleland model turns out to have the same mathematics as a family of rigid rotor problems, while the Euclidean case turns out to have parallels with the Kepler--Coulomb problem in spherical and parabolic coordinates. Previous work on relational mechanics covered cases where the constituent subsystems do not exchange relative angular momentum, which is a simplifying (but in some ways undesirable) feature paralleling centrality in ordinary mechanics. In this paper I lift this restriction. In each case I reduce the relational problem to a standard one, thus obtain various exact, asymptotic and numerical solutions, and then recast these into the original mechanical variables for physical interpretation.Comment: Journal Reference added, minor updates to References and Figure

    Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin

    Get PDF
    Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
    • 

    corecore